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Preface

At the INEEL researchers and engineers routinely encounter multiphase, multi-component,
and/or multi-material flows. Some examples include:

Reactor coolant flows

Molten corium flows

Dynamic compaction of metal powders

Spray forming and thermal plasma spraying

Plasma quench reactor

Subsurface flows, particularly in the vadose zone
Internal flows within fuel cells

Black liquor atomization and combustion

Wheat-chaff classification in combine harvesters
Generation IV pebble bed, high temperature gas reactor

The complexity of these flows dictates that they be examined in an averaged sense. Typically
one would begin with known (or at least postulated) microscopic flow relations that hold on the
“small” scale. These include continuum level conservation of mass, balance of species mass and
momentum, conservation of energy, and a statement of the second law of thermodynamics often
in the form of an entropy inequality (such as the Clausius-Duhem inequality). The averaged or
macroscopic conservation equations and entropy inequalities are then obtained from the
microscopic equations through suitable averaging procedures. At this stage a stronger form of
the second law may also be postulated for the mixture of phases or materials. To render the
evolutionary material flow balance system unique, constitutive equations and phase or material
interaction relations are introduced from experimental observation, or by postulation, through
strict enforcement of the constraints or restrictions resulting from the averaged entropy
inequalities. These averaged equations form the governing equation system for the dynamic
evolution of these mixture flows.

Most commonly, the averaging technique utilized is either volume or time averaging or a
combination of the two. The flow restrictions required for volume and time averaging to be
valid can be severe, and violations of these restrictions are often found. A more general, less
restrictive (and far less commonly used) type of averaging known as ensemble averaging can
also be used to produce the governing equation systems. In fact volume and time averaging can
be viewed as special cases of ensemble averaging. Ensemble averaging is beginning to gain
some notice, for example the general-purpose multi-material flow simulation code CFDLib
under continuing developed at the Los Alamos National Laboratory [Kashiwa and Rauenzahn
1994] is based on an ensemble averaged formulation.

The purpose of this short note is to give an introduction to the ensemble averaging methodology
and to show how ensemble averaged balance equations and entropy inequality can be obtained
from the microscopic balances.



Ensemble Averaged Conservation Equations
For Multiphase, Multi-Component,
And Multi-Material Flows

Introduction

Many important “fluid” flows involve a combination of two or more materials having different
properties. The multiple phases or components often exhibit relative motion among the phases
or material classes. The microscopic motions of the individual constituents are complex and the
solution to the micro-level evolutionary equations is difficult. Characteristic of such flows of
multi-component materials is an uncertainty in the exact locations of the particular constituents
at any particular time. For most practical purposes, it is not possible to exactly predict or
measure the evolution of the details of such systems, nor is it even necessary or desirable.
Instead, we are usually interested in more gross features of the motion, or the “average” behavior
of the system. Here we present descriptive equations that will predict the evolution of this
averaged behavior. Due to the complexities of interfaces and resultant discontinuities in fluid
properties, as well as from physical scaling issues, it is essential to work with averaged quantities
and parameters. We begin by tightening up, or more rigorously defining, our concept of an
average. There are several types of averaging. The published literature predominantly contains
two types of averaging: volume averaging [ Whitaker 1999, Dobran 1991] and time averaging
[Ishii 1975]. Occasionally combinations of the two are used. However, we utilize a more
general approach by adopting what is known as ensemble averaging.

When the physical system has a large amount of variability, a natural interpretation of the
meaning of predictions is in terms of expected values and variances. If there are many different
events, or realizations, possible, then the expected value is naturally an “average” over all of
these events, or the ensemble of realizations. The ensemble then is the set of all experiments
with the same boundary- and initial-conditions, with some properties that we would like to
associate with the mean and distribution of the components and their velocities. A realization of
the flow is a possible motion that could have happened. Implicit in this concept is the intuitive
idea of a “more likely” and a “less likely” realization in the ensemble. Therefore, as we shall see
shortly each ensemble of realizations, corresponding to a given physical situation, has a
probability measure on subsets of realizations. The ensemble average is the generalization of the
elementary idea of adding the values of the variable for each realization, and dividing by the
number of observations. The ensemble average then allows the interpretation of phenomena in
terms of repeatability of multi-component flows.

One of the nice features of ensemble averaging, as opposed to volume averaging, is that
ensemble averaging does not require that a control volume contain a large quantity of a particular
component in any given realization. Consider the following example, taken directly from Drew
and Lahey (1993), where the average of a particle-fluid mixture is of interest. Gas turbines are



eroded by particulate matter suspended in the gas stream passing through the inlet and impacting
on the various parts of the machine, e.g. the turbine blades. The trajectories of individual
particles moving through the gas turbine are very complicated, depending on where and when
the particles enter the inlet of the device. Such predictions are, fortunately, seldom required. A
prediction, however, that is of interest to the designer is the average, or expected values, of the
particle flux (or the concentration and velocities of particles) near parts in the device that are
susceptible to erosion. Since the local concentration of particles is proportional to the
probability that particles will be at the various points in the device at various times, and the
particle velocity field will be the mean velocity that the particles will have if they are at that
position in the device, the design engineer will be able to use this information to assess the places
where erosion due to particle impact may occur. Notice it may be that there are no times for
which there will be many particles in some representative control volume (or representative
elementary volume, REV). So, volume averaging, which depends on the concept of having
many representative particles in the averaging volume at any instant, will fail. The
appropriateness of ensemble averaging is obvious. Here the ensemble is the set of motions of a
single particle through the device, given that it started at a random point at the inlet at a random
time during the transient flow through the device. Clearly the solution for the average
concentration and average velocity gives little information about the behavior of a single particle
in the device; however, the information is very appropriate for assessing the probability of
damage to the device. Similar examples could be given where time averaging will fail, but
where ensemble averaging is again appropriate.

The ensemble average is the more fundamentally based than either time or volume averaging. In
fact, both time and volume averaging can be viewed as approximations to the ensemble average,
which can be justified, respectively, for steady or homogeneous flow [Drew and Passman 1999].

Ensemble Averaging

A general method is presented here, based on the ensemble averaging concept, for developing
averaged conservation equations for multiple materials, any one of which may be at point x, at a
given instant ¢. With this procedure, the most likely state at a point (the expected value) will be
determined simultaneously with which material is most likely to be found at that point. Imagine
running an experiment many times and collecting data about the state of the flow at each point x
and time ¢. This information could include which material or phase is present, material density,
velocity, pressure, temperature, concentration, etc. From this information, one can compute the
ensemble average. The ensemble average of a generic property O, of a fluid or material in a

process is an average over the realizations

(0)(5.0) =+~ 20,, (3:1). (1)

where N, is the number of times the process or experiment is repeated, and is a large number.
Now imagine that many of the realizations are near duplicates, i.e. they are essentially the same



state, with N occurrences. We can then rewrite the sum over the realizations as a sum over the
number of states N

—=20,(T) ()

N(x0T

where f (?c,t,F) = ) is the probability of the state I' in the ensemble. Note that in the

R
limit of an infinite number of repetitions of the experiment, with a sum over all of the states, we
have replaced the summation with an integral form in the definition of the ensemble average.

More correctly, because J. f(%,6T)dl =1.0 , werefer to f(%,7,T) as the probability density.

alll’

The state is the full thermodynamic description of the matter at a point X and time t. For
example,

Lo hy, Py T
T =< gty Fo, 5 tig g -+ 3)
XX,

where:

X, ()?t) phase or material indicator function : =1if material k is present
= 0 otherwise

Lo phase or material density

u, phase or material velocity

h, phase or material specific enthalpy

Do pressure

7, deviatoric stress

yox species partial density

U, species velocity

hy species partial enthalpy ,

with



Po = Zpg

species

Doty = Z Doty

species

Poy =2, Pk -

species

Other properties may also appear in the above thermodynamic state such as the phase or material
temperature 6, , the phase or material specific internal energy e, , and the phase or material

specific entropy s,, .

In a typical multiphase flow, the ensemble averages of interest may include

Material k volume fraction : o, = <X k>
Material k bulk average density : O, = <X i p0>
X
Material k intrinsic average density : P, = < d '0°>
7

Species s in material k bulk average density :

X N
Species s in material k intrinsic average density : P = ;,00>
k

X, pi X, p,

Material k velocity : u, = < k'f)ou0> = < kp0u0>
Pk P

X, p.E X, o E

Material k total energy : E = < k'i)o 0> = < o 0>
Pr P

X X

Material k entropy : S = < kf)oso> = < prS0>
P & Py

Mean mixture stress : I= <~0>

X
Mean k —material stress : [, = < d ~0>

a;
Pressure (single pressure model ) : pP= <Po>
X
Pressure in k — material : D, = < kp0>
a,

From a physical viewpoint, the bulk average density of a phase represents a summation of all of
the density values that occurred for that phase, divided by the total number of experiments run.
The bulk average density corresponds intuitively to the idea of the mass of phase £ per unit
volume of mixture, or the observed material density. On the other hand, the intrinsic average
density physically corresponds to a summation of all of the density values that occurred for that
phase, dividing by the number of times in which that phase occurred in the experiments. The



intrinsic average density corresponds intuitively to the idea of the mass of phase &£ per unit
volume of phase k&, or the true material density. Some researchers prefer to work with bulk
average densities [e.g. Kashiwa and Rauenzahn 1994] while others prefer working with intrinsic
densities [e.g. Drew and Passman 1999]. This is mostly an issue of convenience, since one can
easily be converted to the other. Here we will use intrinsic averages. Henceforth, when we say
average, we shall mean intrinsic average unless indicated otherwise.

For a reasonably broad range of conditions (with common substances), the exact balance
equations, valid inside each material, are

00 =—p,V i Material mass conservation (4)
Py =—pV-u,—V-p, (ﬁg - ﬁ0)+ 7y Species mass conservation (5)
pofto =V-T,+p,8 Material momentum balance (6)
pE,=V- (Z’O -1710)+ Vg, +p,8-u,+p,c, Material energy conservation (7
LoSo = % -V. [%) Material entropy inequality , (8)

0 0

For these microscopic balance laws the material derivative has been used, which is defined as
- 00, - . o
0, = ?+u0 VO, Material derivative . 9)

Let us assume that the total variation of f in the phase space ()?,t,l") is [Kashiwa and
Rauenzahn 1994]

of Lo df
o T VI aE = (10)

where we are assuming that as we follow a material point through phase space its probability of
occurrence remains constant. Various moments of this equation can be formed, first by
multiplying equation (10) by Q,, and then averaging this result. It can be shown [Kashiwa and

Rauenzahn 1994, here corrected] that the resulting equation is
0 ~ . _
5<Q0>+V-<Q0u0>:<Q0+Q0V-u0>. (11)

This result is called the moment evolution equation and the details of its derivation are given in
the Appendix. The averaged conservation equations are obtained by letting our generic O, be



replaced by various “meaningful” functions and then by performing judicious manipulations on
the equations to bring about physically useful forms of the equation.

Mass Conservation

By letting O, = X, p, in equation (11) we get

o(x - . }
%W-(){k%ao)=<ka0+ka0+ka0v-uo>
:<ka0+Xk (/50+p0V'L70)>-

Introducing the pure material (microscopic) mass conservation equation and the definition of
average results in

o ~ -
#pk—’_v.akpkuk :<kao>- (12)

Since we are taking time- and spatial-derivatives of functions that are not smooth, this averaged
mass conservation equation is to be interpreted in the sense of distributions, or generalized
functions [Gelfand and Shilov 1964]. Let us examine the right hand side of this equation in
more detail. From the definition of a material derivative we know that

. 0X, .
X, ==t +ii,-VX,
Ot
in a generalized function sense. On the other hand, letting i, denote the velocity of an interface
of phase or material k, the material derivative of X, following the interface velocity vanishes

a)i" +i,,-VX, =0.

This result can be easily seen by first considering points not on the interface where either X, =0
or X, =1 and the partial derivatives both vanish, and thus the left side of this equation vanishes

identically. For points on the interface, which also move with the interface velocity, the function
X, 1s a jump that remains constant so their material derivatives following the interface vanish.

Therefore we can write



- oxX, . oX,
<ka0>: Po ( 51k +u0-Vij—( atk +“mz'Vij

(13)
=0
= <,00 (ﬁo _ﬁint)'VXk> ,
and the averaged mass conservation equation becomes
%"’V "0 Py = <po (i, — i, t)'VXk>
ot : (14)

_ mass
= Qe

We note that VX, has the sifting property of the Dirac delta function(al). Thus the only
contributors are the material interfaces. VX, is aligned with the surface unit normal vector
pointing to phase £ [Drew 1983, Kataoka and Serizawa 1988]

Thus the €3]*” represents the flux of mass to phase & from the other phases via the interface,

usually just referred to as phase change. With no storage of mass at an interface the mass
conservation further requires

no.of phases
Qe =0, (15)

k=1

At this point, it is convenient to introduce for later use, the concept of interfacial area density of
component k. Defined as

A, ==(n,-VX,),

where 7, is the unit external normal to component £ , it is the expected value of the ratio of the

interfacial area (in a small volume) to the (small) volume, in the limit as that volume approaches
Zero.



Generic Conservation Equation

To more expeditiously derive the other conservation equations, let us first derive the averaged
balance equation resulting from a generic, microscopic balance equation. Consider the generic,
microscopic balance equation

%—I—v'po‘//oﬁo:v’*]o"'pogo’ (16)
or
d(py, ~ .
o) 0)+(p0‘//0)v'u0:poV/OZV'J0+pOg0' (7

dt

Equation (16) and (17) hold at each point where sufficient smoothness occurs for the derivatives
to be taken, as does its generic jump condition

[ oo (g — i, )+ T, |- =m (18)

where v, is the conserved quantity, J, is a molecular or diffusive flux, g, is a source density,
and m is the interfacial source of . The symbol [[ . ]] here denotes the jump in the enclosed

quantity across an interface. Obviously, these quantities must be added to our state space, e.g.

’ﬁ, S
r— PoUg, W . (19)
X, X,

Let us also define averages of these quantities as

<ka0‘//0>
Py
(X,/0)

P =

By letting O, = X, p,i, in equation (11) we get



o(X d(X
M+V'<kao‘ﬂoﬁo> <M+kao%v.go>
ot dt
. d ~
:<kaol//o+Xk%+kaol//ov'”o>

: d ;
= kaol//o>+<Xk (%WMV%D

<

=(X, oo+ X,V Ty + X, 0,8, )

(V-XJ,)=(Jy VX, ) +(X, i )+ (X, 0020)

VX, o) =(Jy - VX, )+ oo, (i - m,) VX> (X, P0g,)
V(X o)+ (X oo+ ([ oo (lly =iy, )=, |- VX, ).

Introducing the fluctuating velocity

U =Uy— Uy

into this expression finally results in

—6 7 —/
akaptk‘)”k +V-a pyiiy =V-aka—V~<XkPo‘//o Uk>+akpkgk <|:p01//0 (i, —id,, )~ J, :I VX >
=V.a.J, —V.<kaog//oﬁ,’c>+akpkg,{+<p01//0(ﬁ0 i, )" VX> (J,-VX,)
—V ak'] _l_v akJFluct+akpkgk+Qmass‘//lnt+Q(//

(20)

(X o, i)
a,

where J"" =~ is the flux of y due to fluctuations in the phase k velocity, w;" is

the effective value of y that is transferred to phase & from the other phases due to mass

transfer, or phase change, and Q} is a flux of y to phase £ not due to bulk mass transfer from

the other phases. This is our generic, averaged balance equation. To obtain balance at the
interface, our generic jump balance equation requires the constraint

no.of phases
Qmavs‘l//lnt QZ/ — M , (21)

k=1

where M = <m> is the expected net effect of all the interfacial y -source terms.

10



Species Mass Conservation

The microscopic species mass balance equation can be written as

9P,
ot

+V - pliil =i, (22)

where p; is the species partial density, i, is the species bulk velocity, and 7 is the generation

or source of the species due to chemical reactions. The species mass balance equation is not
usually written this way because we usually don’t know much about individual species
velocities. Instead, it is usually cast as

Py
ot

+V - pyiiy =V - py (i, — iy )+ (23)

because we have (to a certain extent) acquired empirical knowledge of the behavior of the first
term on the right hand side of this equation, as we shall see shortly. Let us now recast this
equation as

0 , o - o (7 s a
_(po&J"'v'(po o “ojzv'{po £ (uo—u(‘)):|+,00 ’ 24)
at pO 0 p() p()

which is in the form of our generic, averaged balance equation (20) with the assignments of

N

2 Po (= s F
Wo="—"- Jo =Py 0(”0_%) o ="
Po Lo Po

.S

Thus the averaged species mass balance equation is
2<kag>+v'<kagﬁo> =V-(X.p (’7‘0 _ﬁg) +<Xk’;3>+ P (1, =i, ) = s (ﬁo _ﬁg) VX, ).
ot

Again introducing the fluctuating velocity and the definitions of averaged quantities, our final
form of the averaged species mass balance equation is

aogfl; +Veay pily = v'<XkPS (ﬁo — )> relative species flux
~V- <‘ka(l)Y ﬁllc> fluctuational diffusion
+<p(§ (ﬁO _ﬁ[nt)'VXk> phase Change (25)

—<p(§ (ﬁo —1, )~VXk> mass exchange

+R; chemical reactions

11



where we have defined the average generation rate in phase £ due to chemical reactions as

R,: = <AX0];’;S> .
k

Momentum Balance

The averaged momentum balance equation results from the generic, averaged balance equation
(20) with the assignment of

W, =1U, Jo=1, g =8
to give

Oa, Pyl

o +Vea panu, =V oy (Zk +Zlfhm)+akpkgk O QP (26)

where the fluctuating stress T}"“ and the interfacial momentum source Q)" are given by

<ka0ﬁl: Uy >
a,

Fluct __
T =

Q" = _<Zo 'VXk>'

The averaged interfacial momentum balance constraint (jump condition) is

no.of phases

Q;(nom +ﬁlintgz1ass — M (27)

surface tension ?
k=1

where M is the interfacial momentum source, i.e. surface tension source.

surface tension
Energy Conservation
The assignment of

1. . L I
V/o:Eozeo"'E“o'“o Jo =T, 1y +q, 8o = 8o Uy T &

to the variables of the generic, averaged balance equation (20) gives the averaged energy
conservation equation

12



6 1 — — Fluct — 1 — — Fluct Fluct —
a_takpk ek+§uk-uk+ek +V-a, p,u, ek+5uk-uk+ek =V-[ak(]~"k+]~"k )uk]
— — Fluct — —
V-, (Qk T4, )+akpk (8k T8 '”k)
energy mom  —int
+Q "+ Q" U]
+Qmass int + 1 —int —int
| G E”k U
(28)
where
1 (X, p,u, - .
e[ = —<k0—kk> fluctuation kinetic energy
2 op
—~r i =t (=1 =
~ Fluct _ <ka0ukek> <XkZ0 ”k> 1 <ka0”k (i, -1, )> .
g, ‘= ~——m + + 5 fluctuation energy flux
a, 7 o
Sluctution internal energy flux  fluctuation shear working Sfluctuation kinetic energy flux
_ <X Po€o >
8k =— energy source
Py
Q" =(qg,-VX interfacial heat source
k 9 k
Qg™ =—(T,-u,-VX interfacial work .
k k Lo Yo k
The averaged interfacial energy balance constraint (jump condition) is
no.of phases . . 1 ) )
anergy + Q]:nom . ﬁ]z(nt + Q;Cnass (e]z{nt +Eﬁ;(m . ﬁ;(ntj — é , (29)
k=1

where & is the interfacial energy source.

Entropy Inequality

The local form of the entropy inequality (8), sometimes called the “Second Law of
Thermodynamics,” is used to place restrictions on the constitutive relations used to give unique
phase or material behaviors. With the assignment of

13



to the variables of the generic, averaged balance relationship (20) the averaged entropy
inequality results,

a - ) .
—“%’t’ P4V -, pys,il, 2V 0 (D + O )+, p, S, + QP+ Qs (30)
where
(n5)
O, =——2L  entropy flux
27"
- X, p,S;i;
DM = —M fluctuation entropy flux
ak
&y
S, =——L  entropy source
Py

Qintropy = <% VX k> interfacial entropy source .

0

This entropy inequality corresponds to what Drew and Passman (1999) call the microscopic
entropy inequality. A macroscopic entropy inequality can be obtained by summing inequalities
(30) over all of the phases or materials present in the mixture [Truesdell 1984 and the other
authors contained therein]. The macroscopic entropy inequality is useful for placing restrictions
on the phasic or material interaction constitutive relations. The averaged interfacial entropy
inequality (jump condition) is

no.of phases

QP 4 Qs > (), (31)

k=1

14
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Appendix: Moment Evolution Equation

It is critical that special attention be given to functional dependencies in deriving the moment
evolution equation. Let us begin first by defining the ensemble average of some property Q, as

(0)(%.6)= [Q,(T,) £ (%.4,T,)dT,, (A1)

where, for example, ') = { PorUy, €0, X, X, } . Note that, while O, depends explicitly upon the
state I",, its average value <QO> depends upon position X and time ¢, which it acquired from the
probability function f(%,£,T,). In fact, (Q,) loses its explicit dependence upon T, by its very

definition as an integral over all possible states IT',.

The variation of the probability is

df =

gdtjta—{-ab?+ g -dr’,,
Ot OxX ar,

so the time variation of the probability can be written

a _ o | o
=t iy Vf+T,- % (A.2)

If we now multiply this equation by Q, (I',) and integrate over I',-space we get

dde—

o Q0 dF + | Oy, -V dL ,+ | O, de (A.3)
J J J J

Let us now further examine each term of this expression. Since O, does not depend explicitly
on time, f,

Ja.(r I

= j 0, f dT,
0 -
5<Q0>(x’t)-

Similarly, since Q, is independent of X , we have

16



[ Qjiiy-f dTy = [V(0,f)-iiy dT,
= [V-(Quiiof)dT, - [ Quf (V-5 )dT,
=V [Qyii,f dT,— [ Q) (V -iiy) f dT,
=V (Qyiiy ) (%,1)—{Q,V -iiy ) (%,1) .

We also know that the T, are independent of T, , so

f

[or,: ~dr,=F, on

ZFO.U (6Qrof ar - jfagodr}

) . 0
=T, 'Q0f|1imitofr0 - IFO -a—%fdl"o
:o-<r0.aQo>

ar,

__[99 4T,
~o\er, dr
__ (99N _ 1o\ (5
= < ” > <Q0>(x,t).

As long as the Q, are physically conserved quantities we also have

df - _
IQOEdro_o.

Putting all these expressions back into the integral equation above gives the moment evolution
equation (11)

{Q) ,
ot

v'<Qoﬁ0> = <Q0 +Qov'i‘0> :

[[ Notice: By comparison with Equation (1.1) of [Kashiwa and Rauenzahn
1994],

a<aQt°>+V‘<QOﬁO)=<I“ 6Q°> jQODfdr

17



theirs should read

a<aQtO> +v'<Qo77‘o> = <F0 ’ ggo>+<Qov'ﬁo>+ IQO %J;dro
= (0, + 0,V iy )+ IQO%CdFO

to be correct. ||
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